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The interaction of an oblique shock with a laminar boundary layer on an adiabatic 
flat plate is analysed by solving the Navier-Stokes equations numerically. Mach 
numbers range from 1.4 to 3.4 and Reynolds numbers range from lo5 to 6 x lo5. The 
numerical results agree well with experiments. The pressure distribution at  the edge 
of the boundary layer is proposed as a sensitive indicator of the numerical resolution. 
Local and global properties of the interaction region are discussed. In the vicinity of 
the separation point, local scaling laws of the free interaction are confirmed. For the 
length of the separation bubble a new similarity law reveals a linear influence of the 
shock strength. A comparison with the triple-deck theory shows that, for finite 
Reynolds numbers, the triple deck tends to overestimate the lengthscale sub- 
stantially and that this discrepancy increases with increasing Mach number. The 
triple-deck model of displacing the main part of the boundary layer is substantiated 
by the numerical results. An asymmetrical structure within the separation bubble 
causes a characteristic distribution of the wall shear stress. 

1. Introduction 
Shock/boundary-layer interaction is a basic phenomenon of viscous-inviscid 

interaction. Because of its great importance in practice, for example its influence on 
the performance of transonic airfoils, supersonic air intakes, gas turbines and re- 
entry vehicles, it has been studied numerous times since the early investigations by 
Ackeret, Feldmann & Rott (1946) and Liepmann (1946). Reviews of experimental 
and theoretical investigations can be found in Stanewsky (1973), Hankey & Holden 
(1975), Kluwick (1979), Adamson & Messiter (1980) and Delery & Marvin (1986). 

The present paper deals with the two-dimensional interaction of an oblique shock 
impinging on a laminar boundary layer at an adiabatic flat plate, figure 1 .  The 
boundary layer encountering the pressure increase p J p ,  across the interaction region 
is retarded and separates if the shock is sufficiently strong. An extensive upstream 
influence of the shock occurs (Liepmann, Roshko & Dhawan 1952). The impinging 
shock is reflected as an expansion fan, thus turning the flow towards the wall where 
the flow reattaches. A very flat and extended separation bubble results (note that the 
transverse scale is considerably stretched in figure 1). Two compression zones 
extending from the separation and reattachment region cause a pressure increase at  
the beginning and end of the interaction region enclosing a pressure plateau over the 
separation bubble. The wall shear stress decreases at the beginning of the interaction 
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FIGURE 1. Oblique shock/laminar boundary-layer interaction. 

region and increases in the reattachment region. Its shape in the reversed flow region 
will be discussed in the present paper. 

Chapman, Kuehn & Larson (1958) have shown that the flow properties in the 
vicinity of the separation point are not dependent on the downstream boundary 
condition, i.e. the shock strength in the present case, and have introduced the term 
‘free interaction ’ for this phenomenon. Oswatitsch (see Oswatitsch & Wieghardt 
1942) was the first to predict the free interaction as a self-induced mechanism 
between boundary layer and supersonic outer flow. A thickening of the boundary 
layer due to an initial disturbance deflects the supersonic flow. This generates a 
compression which again increases the boundary-layer thickness until frictional 
forces balance this unstable situation. For large Reynolds numbers, an asymptotic 
analysis shows that the interaction region exhibits a triple-deck structure ; for details 
see the review of Stewartson (1974). For small disturbances of the order Re-4, i.e. for 
weak shocks, the entire interaction region can be described by the triple deck. For 
this case Rizzetta, Burggraf & Jenson (1978) obtained triple-deck solutions for the 
flow field along a compression ramp on a flat plate. For stronger shocks a large 
separation region is established, the length of which tends to infinity with respect to 
the lengthscale of the triple deck. Burggraf (1975) estimated the lengthscales for this 
case. His analysis is based on the asymptotic structure of the reverse-flow region 
presented by Neiland (1971) and Stewartson & Williams (1973). Brown & Williams 
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(1975) extended the triple-deck analysis and included a higher-order term of the 
expansion. 

The present paper analyses lengthscales and pressure scales of two-dimensional 
shock/boundary-layer interaction for finite Reynolds numbers. The influence of 
Reynolds number, Mach number and shock strength is investigated. The shock 
strengths are moderate to large with respect to the triple-deck scaling but the shock$ 
are weak in the sense of small deflections of the inviscid flow field. The analysis is 
based on numerical solutions of the Navier-Stokes equations. The free interaction 
process will be analysed and details of the reverse-flow region will be shown. 

2. Basic equations and evaluation of numerical influences 
The numerical approach is based on the Navier-Stokes equations together with 

the continuity and the energy equation. For any given control volume “Y, fixed in 
space, with surface a“Y (the term ‘volume’ is used here, although in the present two- 
dimensional case it is actually an area), these equations yield 

pet dV = - Iaypet(w ds) + 1 (Sw - q )  ds, 
av 

(3) 

where p, pw, pet are density, momentum and total energy (e, = e+#u2) per unit 
volume; S is the stress tensor, q is heat conduction and e is the internal energy. The 
fluid is assumed to be a perfect gas with ratio of specific heats y = 1.4. For the viscous 
stress tensor the Newtonian viscosity law is assumed to have zero bulk viscosity 
(Stokes’ hypothesis) and the shear viscosity p to obey Sutherland’s law 

with a non-dimensional Sutherland constant, ZIT,, of 113. Heat conduction q is 
governed by Fourier’s law with a constant Prandtl number of 0.72. The origin of the 
coordinate system is taken at the position xo where the incident shock would meet 
the plate in the inviscid case. The Reynolds number Rezo is based on the free stream 
conditions and the distance of xo from the leading edge. Lengthscales are normalized 
with the displacement thickness 8: of an undisturbed flat-plate boundary layer at 
position xo. 

The governing equations are discretized using a rectangular non-equidistant grid 
(figure 2). Small grid spacings are applied on the wall and near the shock 
impingement point. The triple-deck theory characterizes the lengthscales of the 
separation and reattachment region. A sufficient resolution of the lower deck requires 
that the grid spacings on the wall satisfy the restrictions 

Ay < Re;j8:, ( 5 )  

Ay x Re;! A x ,  (6) 
where xs is an a prwri estimate of the separation point. Details of the grid 
distribution are given in Appendix A. 
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FIGURE 2. Computational grid and detail near shock impingement. (Notice that every second 
grid line is plotted.) 

The inflow boundary is located some distance downstream of the leading edge. An 
undisturbed flat-plate boundary layer is prescribed at the inflow boundary. At the 
far-field boundary opposite the wall, undisturbed flow is applied upstream of the 
shock and the Rankine-Hugoniot values are specified behind the shock. Vanishing 
gradients 

(7) 
a a 2  

ax a&' - ( p ,  pv, pet) = - u = 0 

are assumed at  the outflow boundary. Adiabatic wall conditions and the no-slip 
boundary condition are applied on the wall. Furthermore, a vanishing pressure 
gradient, ap/ay = 0, is assumed on the wall. The error of this pressure condition has 
been estimated by analysing the wall shear-stress distribution and was found to  be 
of the order for the Reynolds numbers of the present investigation. Numerical 
tests confirmed that a variation of the boundary's location causes negligible 
disturbance of the interaction region as long as the boundaries are sufficiently far 
away from the interaction region. See Katzer (1985) for details. 

The governing equations are solved by the explicit time-split MacCormack (1969) 
scheme; details are presented in Appendix B. Initial conditions are given by the 
inviscid case of a shock reflection on the wall. The calculation proceeds in time until 
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- 100 - 50 0 50 100 

Step sizes 

Grid size AXmin/a$ 

N ,  XN, Axmnxla$  

51 x41 2.65 
7.85 

151 x 81 0.88 
2.66 

192 x 103 0.70 
2.09 

151 x 101 0.76 
2.96 

AYminlJ,* 

AYm,x l~ ,*  8 a S * P , *  1,/6,* F*BIfQ 

0.123 2.0 x 27 61.3 1.44 
3.602 

0.061 2.0 11 69.7 1.87 
1.792 0.5 6 69.6 1.92 

71.9 1.99 
71.8 2.00 1.403 0.1 2 

0.048 0.5 38 71.0 1.97 
1.429 

0.047 0.4 34 

TABLE 1. Influence of grid size and numerical dissipation E on numerical width of the shock at the 
edge of the boundary layer 4, and the length 1, and height h, of the separation bubble. (Nl = 2.0, 
Rezo = 3 x lo5, p J p l  = 1.4.) 
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a steady state is reached. This is assumed when the root mean square of the wall 
pressure, 

is smaller than Here, N is the number of grid points on the wall. The slowly 
growing length of the interaction region, lint, controls the convergence. Non- 
dimensional convergence times are in the order of 

(9) 

Typical computation times on a CRAY-1/S are 1 to 5 hours. The rate of data 
processing is 12 ps per grid point and time step. The numerical code is extremely fast 
and reaches a computational speed of 60 x lo6 floating-point operations per second 
on a CRAY-1/S. 

The influence of the grid on the numerical solution is analysed for the free-stream 
Mach number MI = 2, Reynolds number ReZ. = 3 x lo5 and shock strength p J p ,  = 
1.4. Results obtained with a coarse and a fine grid are compared in figure 3. The wall 
pressure curves and the wall shear-stress distributions agree with one another fairly 
well but there are differences in size and shape of the separation bubbles. The 
separation bubble for the coarse grid is 12% smaller and its height is 23% shorter 
than for the fine grid. A further decrease of the grid spacings with a 192 x 103 grid 

tm x (15 . . . 35) lint/Um. 
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increases the length of the separation bubble by 3% and its height by 7%. For 
various grids, the sizes of the separation bubbles are given in table 1. Figure 3 shows 
that the wall pressure is not suitable for assessing the accuracy of the numerical 
solution. The pressure at the edge of the boundary layer is more appropriate for that  
purpose. The impinging shock generates a pressure increase followed immediately by 
a steep pressure decrease caused by the expansion fan. Figure 4 shows that this 
pressure peak is not resolved sufficiently by the coarse grid ; shock and expansion fan 
are diffused over several grid points. The boundary layer is not subject to an 
impinging discontinuity but a gradual pressure gradient and the size of the 
separation bubble is underestimated. This confirms Messina’s (1977) result that small 
grid spacings are required not only transverse to the boundary layer but also in the 
longitudinal direction. The width of the impinging shock profile should be an order 
of magnitude smaller than the extent of the interaction region. The shock width 
which is estimated by using the gradient of the pressure profile a t  the edge of the 
boundary layer, is presented in table 1 for various grid sizes. During the investigation, 
i t  was found that a redistribution of the grid points and an increased number of nodes 
normal to  the wall give a sharper shock profile. The pressure at  the edge of the 
boundary layer for the resulting 151 x 101 grid is shown in figure 4. For this grid, the 
diagonals of the grid cells in the far field are virtually aligned with the impinging 
shock. (The parameters defining this grid are given in table 4, Appendix A.) The 
shock inclination and the thickness of the boundary layer depend on the flow 
parameters ; therefore various grids with sizes of the order 151 x 101 were applied for 
the parameter studies of $3-5. 

The influence of the numerical dissipation which is controlled by the parameter 
E will now be discussed. Table 1 shows that an increase of the dissipation by factor 
of 4 for a fixed grid has no influence on the length of the separation bubble and only 
a small influence on its height. Decreasing dissipation also decreases the numerical 
diffusion of the shock but increases numerical oscillations downstream of the shock 
impingement point. A dissipation parameter of E = 0.5 has been found to be a good 
compromise between a sufficient damping of numerical distortions and a sharp shock 
profile. 

3. Comparison with experiments and details of the separation bubble 
Figures 5 and 6 compare the numerical results for the free-stream Mach number 

MI = 2, Reynolds number 3 x lo5 (slightly different from experimental conditions) 
and shock strength p , /p ,  = 1.25 and 1.4 with the experiments conducted by 
Hakkinen et al. (1959). The wall pressure distributions and the boundary-layer 
profiles are in good agreement with the experiments. The wall shear stress agrees well 
for the weaker shock. For the stronger shock, there are considerable differences in the 
reattachment region. The length of the separation bubble is overestimated compared 
to the experiment. These discrepancies are somewhat surprising when the good 
agreement in the wall pressure distribution is taken into account. It was suspected 
that the differences between the lengthscales of experiment and calculation are due 
to the free-stream temperature of 320 K (i.e. TIT, = 0.33) used in the calculation 
and which is expected to be too high compared with the experiment. As a 
consequence, computations were performed with a free-stream temperature of 
160 K. This halving of the free-stream temperature reduced the length of the 
separation bubble by only 3 %, so that  the differences between the numerical 
calculation and the experiment could not be attributed to temperature effects. The 
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FIGURE 5. Comparison of numerical solution with experiment. M ,  = 2.0, RezD = 3 x lo5, p J p ,  = 
1.25, -, numerical solution ; 0 ,  experiment : Hakkinen et a2. (1  959). ( a )  Boundary-layer profiles 
at station 2; (6)  wall shear stress; (c) wail pressure. 

experimental value of the final pressure p ,  seems to be slightly below the quoted 
value of 1.4. A comparison of the numerical results for a shock strength of 1.375 with 
the experiment shows very good agreement with the wall shear stress up to 
separation but the length of the separated region is still overestimated considerably. 
In the experimental investigations, the wall shear stress has been measured using a 
Stanton probe contacting the wall. This disturbance of the boundary layer could 
have influenced the length of the separation bubble. I n  addition, the two 
experimental values with zero wall shear stress indicate that no positive value of the 
wall shear stress has been detected. They are located well within the separation 
bubble and cannot be used to determine the actual bubble length. 

Figure 7 shows streamlines in the boundary layer and within the separation 
bubble. Note that the vertical scale is magnified by a factor of about ten. In the 
present case, the separation bubble exhibits a symmetrical triangular shape. It is 
surprising that an asymmetrical structure is found within the bubble despite this 
external symmetry. The centre region with the fluid at rest is shifted to the right 
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beneath the falling flank of the bubble. The displacement of this centre generates the 
typical shape of the wall shear-stress curve: a second minimum occurs just before 
reattachment. The author has found this second minimum in all of his numerical 
results except for very small separation bubbles. An inspection of published sources 
discloses that such a second minimum has also been obtained with various methods 
(Navier-Stokes calculations, inverse boundary-layer methods, triple-deck solutions) 
used by the following authors: Reyhner & Flugge-Lotz (1968), Skoglund & Gay 
(1969), Carter (1972), MacCormack & Baldwin (1975), Rizzetta et al. (1978), Peyret 
& Viviand (see Le Balleur, Peyret & Viviand 1980), MacCormack (1982), Bodonyi & 
Smith (1986), Degrez, Boccadoro & Wendt (1987), whereas it does not exist in the 
results obtained by MacCormack (1971), Li (1976), Wagner & Schmidt (1978), Beam 
& Warming (1978) and Haase, Wagner & Jameson (1984). The triple-deck analysis 
by Cebeci, Keller & Williams (1979) shows a similar asymmetrical structure within 
the separation bubble; see Stewartson (1981). 

Consider now the streamlines within the approaching boundary layer. There are 
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FIGURE 7. Streamlines within the separation bubble and in the boundary layer and wall shear- 
stress distribution, displacement thickness s* and momentum thickness s** in the interaction 
region. (MI = 2.0, Rezn = 3 x lo5, p,/p, = 1.4.) 

no significant disturbances in the streamline spacings as they pass through the 
interaction region. The oncoming boundary layer is simply displaced from the wall 
by the separation bubble. This resembles the free interaction model of the triple-deck 
theory with which the flow in the middle deck is displaced by the flow in the lower 
deck. For further verification, the variation of the displacement thickness and the 
momentum thickness across the interaction region has been analysed (figure 7) .  
While the displacement thickness changes considerably in the interaction region, the 
momentum thickness is almost constant (in fact it increases slightly just like that of 
an undisturbed boundary layer). This again confirms the model of a displacement of 
the boundary layer by very slow fluid at the wall and slowly recirculating fluid within 
the separation bubble. 

4. The free interaction region 
A comprehensive investigation has been performed to  verify whether the numerical 

solutions are able to confirm the local properties of the free interaction region at the 
separation point. For the various Mach numbers, Reynolds numbers and shock 
strengths given in table 2, shock/boundary-layer interactions were calculated. Table 
2 provides the key to the symbols used in figures 8 , 9  and 11.  The pressure ratio p J p ,  
across the incident and reflected shock in the inviscid case is used to measure the 
shock strength, whereas the weak interaction between the boundary layer and the 
outer flow field upstream of the shock/boundary-layer interaction region is neglected. 
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Mach Reynolds Shock strength 
number number PJP, 

Symbol MI Req 

A 1.414 105 1.20 1.25 
0 2.0 105 1.25 1.30 1.40 1.50 
n 1.6 3 x 1 0 6  1.20 1.30 1.35 1.40 
0 2.0 3 x  106 1.20 1.25 1.30 1.375 

v 2.8 3~ 105 1.60 
0 3.4 3~ 105 1.60 1.644 1.80 
0 2.0 6 x  lo5 1.40 

TABLE 2 .  Key to symbols in figures 8, 9, and 1 1  : parameter combinations of numerical 
investigation 

1.40 1.50 

For the pressure at the separation point, p s ,  the local scaling laws presented for 
example by Chapman et al. (1958), and Stewartson (1974) yield 

- P, [ c f l / ( i q -  l):]:, - 2 Ps-PI cp, - -- - 
YK PI 

where cf ,  is the wall shear stress a t  the beginning, xl, of the interaction region: 

and 

is the Chapman-Rubesin constant. The value of the constant P, given by various 
authors varies within the range from 1.15 to 1.45. An analogous scaling law applies 
for the plateau pressure with a different constant Pp. Figure 8 shows the pressure at  
the separation point and the plateau pressure of the numerical calculations plotted 
according to the scaling law (10). For the pressure at separation this law is confirmed 
by the calculations which yield a constant of P, = 1.4. Analogous results are obtained 
for the plateau pressure with constant P, = 2.3. The scatter of these data indicates 
that the pressure plateau is not fully developed for weak shocks. The pressure 
constants are in good agreement with the experimental data of Greber, Hakkinen 
& Trilling (1958) and Hakkinen et al. (1959), which yield P, = 4 2 ,  Pp = 2.33, and 
the triple-deck scaling which yields P, = 1.45 (Stewartson & Williams 1969) and 
Pp = 2.55 (Williams 1974). 

To examine the length of the free interaction region, the distance 1, between the 
beginning of the interaction region and the separation point has been analysed. The 
beginning of the interaction region is determined by intersecting the tangent on the 
wall pressure curve at  separation with the abscissa. The free interaction length 1, is 
scaled with a local reference value, namely the displacement thickness S,* of an 
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FIGURE 8. Pressure at separation point and plateau pressure. See table 2 for legend of symbols. 
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FIGURE 10. Comparison of Navier-Stokes solutions with the triple-deck theory. Wall pressure near 
separation point : (a) for various Reynolds numbers, M I  = 2.0; and ( b )  for various Mach numbers, 
Re, x 2.4 x lo5 

undisturbed flat-plate boundary layer at  the position x, where separation will take 
place 

Figure 9 shows the influence of the shock strength on the free interaction length. The 
free interaction property is obvious : its length 1, is independent of the shock strength, 
instead it depends only on the local flow conditions, eg. S:, in the vicinity of the 
separation point. There are only indirect influences of the shock which determine 
whether and where separation takes place, thereby determining the local flow 
conditions in the vicinity of the separation point. 

A comparison between the present Navier-Stokes calculations and the result of the 
triple-deck theory is shown in figure 10. Figure 10(a) shows the wall pressure in the 
vicinity of the separation point for two finite Reynolds numbers. The Mach number 
is 2.0, wall temperature is 1.68T, and the Chapman-Rubesin constant is 0.86. Wall 
pressure and lengthscale are expressed as non-dimensional triple-deck variables 

X=- [(Mt- 1)ReJCIt (T,/T,)-kf, (14) 
(Stewartson 1974) : x-x, 

X, 

where h is 0.332. 
As the wall pressure curves show, the triple-deck solution tends to overestimate 

the lengthscale for finite Reynolds numbers. With increasing Reynolds number, this 
discrepancy is reduced but the Reynolds numbers of the numerical calculation are 
still far too low to show good agreement with the asymptotic theory. The trend that 
the triple deck tends to overestimate the lengthscale has also been confirmed by 
Burggraf (1975) in comparison with experiments and by Burggraf et al. (1979) in 
comparison with interacting boundary-layer theory. In the latter case good 
agreement with the triple deck was achieved for extremely large Reynolds numbers 
of about lo9, where an asymptotic theory might be expected to become more 
accurate. 
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As figure 10 ( b )  shows, the discrepancy between the Navier-Stokes solution and the 
triple-deck solution increases with increasing Mach numbers. The Mach number 
varies between 1.6 and 3.4 whereas the Reynolds numbers (based on xs) are of about 
the same order of 2.4 x 105. It is interesting that all pressure curves cross a t  nearly 
one single point near the separation point. This explains the good agreement between 
the present Navier-Stokes solution and the triple-deck theory for the pressure at  the 
separation point. 

5. Length of the separation bubble 
The length of the separation bubble is discussed here as a global lengthscale of the 

interaction region. Figure 11 (a )  shows the influence of Mach number, Reynolds 
number and shock strength on the length of the separation bubble I ,  scaled with a:. 
The bubble length increases with increasing shock strength p3/pl. The intersections 
of the plotted lines with the abscissa show that separation occurs when the shock 
strength is larger than a certain threshold value. This shock strength for incipient 
separation, pine, can be scaled according to  the laws of the free interaction: 

where cfo is the wall shear stress of an undisturbed flat-plate boundary layer at shock 
impingement xo. The constant pi,, is determined from figure 11 (a )  to be 

en, = 1.8542,  (17) 

whereas experimental and theoretical analyses by Greber et al. (1958) yield P,,, = 
2 4 2  and triple-deck results by Rizzetta et al. (1978) yield P,,, = 1.571/2. Keeping in 
mind the experimental difficulties to discover very small separation bubbles, the 
comparison of the numerical computation with experiment is very good. 

The influence of Mach and Reynolds number on the length of the separation 
bubble can be seen clearly in figure 11 (a ) .  Increasing the Reynolds number and 
decreasing the Mach number increases the bubble length. An appropriate Mach and 
Reynolds number scaling leads to a new similarity law for the length of the 
separation bubble 

Figure 11 ( b )  shows the length of the separation bubble plotted with respect to this 
scale. All numerical data are described well by this similarity law. The factor 
M;j/(Rezo/C);, which is the same as the viscous-inviscid interaction parameter for 
hypersonic flows, should not be confused with the latter parameter because the 
present calculations are restricted to the supersonic range 1.4 Q Ml Q 3.4. 

The Mach-number scaling has not been interpreted physically. It was chosen 
merely because it best fits the numerical data of the present investigation. For a 
thorough physical interpretation, an analysis of the influence of the wall temperature 
is recommended. In  the present analysis with isolated wall conditions, the wall 
temperature depends on the Mach number and thus the effects of both parameters 
could not be separated. A crude interpretation of the Reynolds-number scaling can 
be made. Assuming that, once the shock strengths increase the threshold value for 
incipient separation, the pressure forces are balanced by friction forces along the 
separation bubble, i t  follows that I ,  Re;! is independent of the Reynolds number, 
which yields the Reynolds-number scaling of (18). 
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FIGURE 1 1 .  Length of the separation bubble. See table 2 for legend of symbols. (a) Influence of 
the shock strength. (b) Similarity law for the length of the separation bubble. 

Length of separation 
bubble 

Mach Reynolds Shock 
number number strength Triple-deck 

MI Rezo PJP, lB/x,, scale X, 
2.0 1 0 5  1.40 0.29 4.1 
2.0 3~ 1 0 5  1.30 0.22 4.7 
2.0 6 x lo5 1.25 0.19 5.1 
1.4 3 x 105 1.20 0.32 6.0 
2.0 3 x 105 1.30 0.22 4.7 
3.4 3 x 105 1.61 0.18 2.8 

12.4 
Length of separation bubble of triple-deck 
solution equivalent to all cases above is: 

TABLE 3. Comparison of the length of the separation bubbIe with the triple-deck analysis by 
Rizzetta et al. (1978) 

The present scaling law (18) for the length of the separation bubble is compared 
with the triple-deck solution by Rizzetta et d. (1978) who studied the shock/ 
boundary-layer interaction induced by a compression ramp a t  the wall. It is 
assumed that the bubble length in this case is comparable with the bubble length of 
the present calculation, provided that the increases of pressure across the interaction 
region is the same in both cases. The length of the separation bubble given by the 
triple-deck analysis is obtained from figure 2 in Rizzetta et aE. (1978) and yields 
X,, = 12.4 for a non-dimensional ramp angle of 3. Table 3 shows the corresponding 
bubble length of the present investigation for an equivalent shock length. As 
different combinations of Mach and Reynolds numbers lead to the same triple-deck 
lengthscale, a variety of these parameters was chosen for comparison. No 
Navier-Stokes calculations were obtained for these specific parameter combinations. 
Instead, the similarity law (18), which in fact interpolates the Navier-Stokes 
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calculations, was used to calculate the length of the separation bubble. Scaling the 
bubble length according to (14) yields the triple-deck lengths X, in table 3. In  the 
same way as the triple-deck solution overestimates lengths in the vicinity of 
the separation point, it overestimates the bubble length by a factor of two to almost 
five. Furthermore, for finite Reynolds numbers, the discrepancy between the 
Navier-Stokes analysis and the triple-deck analysis not only depends on the 
Reynolds number but increases with increasing Mach number as well. 

Burggraf (1975) presents a scaling law for the length of the plateau region. The 
analysis is based on the asymptotic theory of Neiland (1971) and Stewartson & 
Williams (1973) which is valid for large Reynolds numbers and extensive plateau 
regions. In the present notation this scaling law yields 

where 

Here the length of the plateau region is identified with the length of the separation 
bubble and pine is identified with the corresponding threshold value of Burggraf. In  
the range of the present investigation, function KB varies only slightly between 11.4 
and 14.2 and consequently, the similarity law (18) gives nearly the same Mach- and 
Reynolds-number scaling as Burggraf s analysis (19). The influence of the pressure 
increase is given by the power of 1.5 in Burggraf s equation (19) ; this contrasts with 
the linear influence identified in figure 11 (a). A possible reason for these different 
pressure influences is that the present investigation is restricted to separation 
bubbles which are not large enough for application of the asymptotic theory. 
Furthermore, the Reynolds numbers are not sufficiently large. It is interesting to 
note that for a shock strength of ps-pinc = 0.14pl, which corresponds to MI = 2.0, 
Rezo = 3 x lo5, p,/p, = 1.33, the length given by (18) is identical with Burggrafs 
scale (19). A numerical investigation of the lengthscale of extremely large separation 
bubbles is left for future studies. 

6.  Conclusions 
The interaction of an oblique shock with the laminar boundary layer on a 

thermally isolated flat plate has been analysed numerically. The Navier-Stokes 
equations were solved using the explicit MacCormack (1969) scheme. The pressure 
distribution a t  the edge of the boundary layer is found to be useful for the assessment 
of the numerical resolution. The width of the impinging shock profile is recommended 
to be an order of magnitude smaller then the extent of the interaction region. 
Consequently, small grid spacings are required along the wall and in the orthogonal 
direction. The numerical results agree well with experiments by Hakkinen et al. 
(1959). 

The influence of the Mach number in the range from 1.4 to 3.4, Reynolds number 
in the range from lo5 to 6 x lo5 and shock strength in the range from 1.2 to 1.8 
was investigated. The shock strength necessary for boundary-layer separation was 
determined. Scaling laws of the interaction region were investigated and the 
existence of two different mechanisms was confirmed : a global mechanism ruling the 
length of the separation bubble and a local mechanism ruling the free interaction 
region in the vicinity of the separation point. For the length of the separation bubble 
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a new similarity law has been derived by correlating the numerical results. Within 
the range of the present investigation, the length of the separation bubble depends 
linearly on the shock strength and the influences of Mach and Reynolds number are 
given by the powers of 3 and t ,  respectively. This represents a global scaling law. The 
numerical results confirm that the lengthscale of the free interaction region does not 
depend on the shock strength. The pressure at  the separation point and the plateau 
pressure are governed by the wall shear stress at the beginning of the interaction 
region and the Mach number at the edge of the boundary layer. Thus local scaling 
laws were verified. 

The asymptotic theory of the triple deck is confirmed for the pressure scaling, 
whereas the lengthscales could not be verified for the finite Reynolds numbers 
investigated here. For the length of the separation bubble as well as the extent of the 
free interaction region near the separation point, the triple-deck lengthscale tends to 
overestimate the extent of the interaction region considerably. This discrepancy 
increases with increasing Mach number and decreaaes with increasing Reynolds 
number. The triple-deck model of passive displacement of the main part of the 
boundary layer in the middle deck is substantiated by the numerical calculations. 

The shape and structure of the separation bubble has been analysed and an 
asymmetrical flow structure has been found inside the bubble. This leads to an 
asymmetrical distribution of the wall shear-stress curve which exhibits a second 
minimum just upstream of reattachment. 

Analysis of the influence of the wall temperature and the physical interpretation 
of the mechanisms determining the length of the interaction region are recommended 
as topics for further research. 

This work was performed at  the Institute of Theoretical Fluid Mechanics of the 
German Aerospace Research Establishment (DLR-AVA) in Gottingen. The author 
thanks Professor Dr-Ing. H. Oertel, Institute of Theoretical Fluid Mechanics and 
Professor Dr-Ing. J. Zierep, Institute of Fluid Mechanics a t  the Technical University 
of Karlsruhe for many helpful discussions and for supporting this work. The valuable 
suggestions of the referees are gratefully acknowledged. 

Appendix A. Distribution of the grid points 
The numerical grid is generated by control functions which map equidistant nodes 

T~ = i A7 upon non-equidistant nodes yz  = f(Tt). The function which controls the node 
distribution in the y-direction is presented in the following paragraph. The nodes in 
the x-direction are generated similarly. 

Control function f is assumed to be a strictly monotonic and continuously 
differentiable function and is uniquely defined by a few control nodes (vk, yk) and the 
slopes y;. The control function is defined within the interval [qr,qk+J either as a 
polynomial of degree three or as an exponential function. In the latter case, f is given 
locally as an affine transformation of the normalized function : 

on the unit interval. Parameter a is determined by the slope y: at one edge, K ,  of the 
control interval : 

k + l  if y; > (A 2) 
if Y; <&+I K = {  
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y-distribution x-distribution 

Function v k  Y k  Y; Function ?k x* 4 

Polynomial 3 8 10.99 5.281 Polynomial 3 62 0.00 1.015 

Polynomial 1 0  0 0.338 Exponential 1 0 -118.36 3.896 
Exponential 2 4 2.03 0.676 Polynomial 2 32 -33.82 1.691 

4 14 67.64 10.145 Exponential 4 92 33.82 1.691 
5 115 101.45 4.692 

TABLE 4. Control nodes defining the numerical grid. Case M ,  = 2.0, Rezo = 3 x lo5, p , / p ,  = 1.4. 
Grid size is 151 x 101, leading edge of plate: zLE = - 169.1. 

Table 4 defines the 151x 101 grid used by the numerical calculation for the 
parameter case Ml = 2.0, Re5. = 3 x lo5, p , / p l  = 1.4. Grids which have been used for 
other parameter combinations, are available from the author. 

Appendix B. Numerical algorithm 
I n  this section a concise definition of the numerical algorithm is presented; see 

Katzer (1985) for a comprehensive presentation. A shorthand notation of the 
governing equations (1)-(3) is introduced : 

and these equations are discretized for small control volumes which are defined using 
a rectangular grid (xj, yi). A control volume, identified by the indices (i, j), is defined 
by its vertices which are located a t  the centre of four adjacent grid nodes. A time- 
split finite-volume version of the MacCormack (1969) scheme (see MacCormack & 
Baldwin 1975) is given here as a sequence of operators, each dealing with only one 
direction of the flow field. The predictor operator in the J-direction, 4, is given by 
the forward Euler discretization of the time derivative of (Bl )  thereby neglecting the 
fluxes in the I-direction through the cell surfaces ( i  +;, j) and (i-t, j) : 

(B 2 )  
At 

Pj(U)i j  = U, +-Ayi.j(H&+t-H[j-t) 
%j 

Here Kj is the area and Ay, is the length of the sides of the control volume. The 
fluxes in the J-direction, H&+;, are given below. The corrector step in J-direction is 
defined in a similar way: 

(B 3) 

An averaging operator which will be denoted by an overbar yields a second-order 
accurate discretization of (Bl)  : 

C At 
CJ(u)ij = utj +-Ayij(H~j+g-H,,j-t). 

7% 

Predictor and corrector operators in the I-direction are defined in a similar manner 
where i and j are interchanged and Ay is replaced by Ax. Fourth-order numerical 
dissipation i A  introduced by the operators : 
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and D,  which is defined similarly. The order of the operators is reversed every second 
time step which yields a symmetrical scheme proceeding the solution from time t to 
t+2At: 

The time step is restricted by the CFL condition given by MacCormack & Baldwin 
(1975). The entries in the flux tensors H&+t and HE,,; are defined below for the 
operators in the J-direction. The pressure is 

and the convective fluxes are given by 

where the indicator e is 1 for the predictor step and e is 0 for the corrector step. The 
superscript T denotes the row vector of the velocities and u denotes the velocity 
component in the x-direction. The author’s experience suggests that the flux 
correction, which is in effect when the if-condition in (B8) is true, is not necessary for 
the I-operators in the y-direction normal to the wall. The construction of the viscous 
terms in the stress tensor is given by Deiwert (1975). 
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